The Edge-to-vertex Geodetic Number of some snake Graphs

S.Sujitha
Department of Mathematics
Holy Cross College (Autonomous)
Nagercoil-629004, India.
sujivenkit@gmail.com

Abstract

A set $S \subseteq E$ is called an edge-to-vertex geodetic set of G if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is $g_{e v}(G)$. Any edge-to-vertex geodetic set of cardinality $g_{e v}(G)$ is called an edge-to-vertex geodetic basis of G. In this paper we study the edge-to-vertex geodetic number of some path related graphs called snake graphs which are obtained from the path P_{n} by replacing its edges by cycles C_{3}.

Keywords: geodesic, edge-to-vertex geodetic set, edge-to-vertex geodetic number.

AMS Subject Classification: 05C12.

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. We consider connected graphs with at least three vertices. For basic definitions and terminologies we refer to [1, 5]. For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called a $u-v$ geodesic. The geodetic number $g(G)$ of G is the minimum order of a geodetic set and any geodetic set of order $g(G)$ is called a geodetic basis of G. The geodetic number of a graph was studied in $[1,2,3,4]$. For subsets A and B of $V(G)$, the distance $d(A, B)$ is defined as $d(A, B)=\min \{d(x, y): x \in A, y \in B\}$. A $u-v$ path of length $d(A, B)$ is called an $A-B$ geodesic joining the sets A, B where $u \in A$ and $v \in B$. A vertex x is said to lie on an $A-B$ geodesic if x is a vertex of an $A-B$ geodesic. For $A=\{u, v\}$ and $B=$ $\{z, w\}$ with $u v$ and $z w$ edges, we write an $A-B$ geodesic as $u v-z w$ geodesic and $d(A, B)$ as $d(u v, z w)$. A set $S \subseteq E$ is called an edge-to-vertex geodetic set if every vertex of G is either
incident with an edge of S or lies on a geodesic joining a pair of edges of S. The edge-to-vertex geodetic number $g_{e v}(G)$ of G is the minimum cardinality of its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality $g_{e v}(G)$ is called an edge-to-vertex geodetic basis of G. The edge-to-vertex geodetic number of a graph was introduced by Santhakumaran and John and the same was further studied by various authors in [6]. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. A vertex v is an end vertex of a graph G if $d(v)=1$. A cut-vertex (cut-edge) of a graph G is a vertex (edge) whose removal increases the number of components. Two vertices u and v of G are antipodal if $d(u, v)=\operatorname{diam} G$ or $d(G)$. For any real number $n,\lceil n\rceil$ denotes the smallest integer not less than n and $\lfloor n\rfloor$ denotes the greatest integer not greater than n. The triangular snake T_{n} is obtained from the path P_{n} by replacing every edge of a path by a triangle C_{3}. The double triangular snake $D T_{n}$ consists of two triangular snakes that have a common path. The alternate triangular snake $A T_{n}$ is obtained from a path P_{n} by replacing every alternate edge of a path P_{n} by a cycle C_{3}. The double alternate triangular snake $D A\left(T_{n}\right)$ consists of two alternate triangular snakes which have a common path. The quadrilateral snake Q_{n} is obtained from a path P_{n} by replacing every edge of a path P_{n} by a cycle C_{4}. Throughout this paper G denotes a connected graph with at least three vertices. The following theorems are used in sequel.

Theorem 1.1. [6] If v is an extreme vertex of a connected graph G, then every edge-to-vertex geodetic set contains at least one extreme edge that is incident with v.
Theorem 1.2. [6] Let G be a connected graph and S be a $g_{e v}$-set of G. Then no cut edge of G which is not an end-edge of G belongs to S.
Theorem 1.3. [6] Every end-edge of a connected graph G belongs to every edge-to-vertex geodetic set of G.

2. Main Results

Theorem 2.1. For the triangular snake $G=T_{n}, g_{e v}(G)=n-1$.
Proof. Consider the path $P_{n}: v_{1}, v_{2}, v_{3}, v_{4} \ldots, v_{n-1}, v_{n}$. Let the triangular snake T_{n} in Figure 2.1 be obtained by replacing each edge $v_{i} v_{i+1}$ of P_{n} to triangle C_{3} by adding the new vertices u_{1}, u_{2}, u_{3}, $u_{4} \ldots, u_{n-1}$. The triangular snake T_{n} consists of $2 n-1$ vertices, $3(n-1)$ edges and $n-1$ triangles. Moreover, it consists of $2 n$ extreme edges. (Each $C_{\mathrm{i}, \mathrm{i}} \mathrm{i}=2,3 \ldots \mathrm{n}-2$ has two extreme edges and C_{1} and C_{n} have three extreme edges) By Theorem 1.1, every edge-to-vertex geodetic set contains at least one extreme edge from each C_{3}, we have $g_{e v}(G) \geq n-1$. Suppose that $g_{e v}(G)=n$. Then there
exists a mínimum edge-to-vertex geodetic set S such that $|S|=n$. Without loss of generality, let us take $S=\left\{u_{1} v_{1}, u_{2} v_{2}, u_{3} v_{3}, \ldots, u_{n-1} v_{n-1}, u_{n-1} v_{n}\right\}$. Clearly S is an edge-to-vertex geodetic set of G. But S - $\left\{u_{n-1} v_{n-1}\right\}$ is an edge-to-vertex geodetic set of G and is contained in S. So S is not a minimum edge-to-vertex geodetic set. Therefore, $g_{e v}(G) \leq n-1$.Hence $g_{e v}(G)=n-1$.

Triangular snake T_{n}
Figure 2.1
Theorem 2.2. For the double triangular snake $G=D T_{n}, g_{e v}(G)=2(n-1)$.
Proof. Consider the path $P_{n}: v_{1}, v_{2}, v_{3}, v_{4} \ldots, v_{n-1}, v_{n}$. The doublé triangular snake $D T_{n}$ in Figure 2.2 is obtained by replacing each edge $v_{\mathrm{i}} v_{\mathrm{i}+1}$ of P_{n} to two triangle's C_{3} in which the path is common for both the triangles and the new vertices are $u_{1}, u_{2}, u_{3}, u_{4} \ldots, u_{n-1}$ and $w_{1}, w_{2}, w_{3}, w_{4} \ldots, w_{n-1}$. The doublé triangular snake consists of $3 n-2$ vertices, $5(n-1)$ edges and $2(n-1)$ triangles. Clearly $D T_{n}$ has $4(n-1)$ extreme edges. By Theorem 1.1, every edge-to-vertex geodetic set contains at least one extreme edge from each C_{3}, we have $g_{e v}(G) \geq 2(n-1)$. Let $S=\left\{u_{1} v_{1}, v_{1} w_{1}, u_{2} v_{3}, v_{3} w_{2}, u_{3} v_{4}, v_{4} w_{3}, \ldots\right.$, $\left.u_{n-1} v_{n}, v_{n} w_{n-1}\right\}$ be a subset of the set of all extreme edges of G. It is easily observe that S is a minimum edge-to-vertex geodetic set of G, and $|S|=2(n-1)$. Therefore, $g_{e v}(G) \leq 2(n-1)$. Hence $g_{e v}(G)=2(n-1)$.

Double Triangular snake $D T_{n}$
Figure 2.2

Remark 2.3. For the above two theorems, we can see that the edge-to-vertex geodetic number of T_{n} and $D T_{n}$ depends on the number of triangles in the corresponding snake graph.

Theorem 2.4. For an alternate triangular snake $G=A T_{n}$,

$$
g_{e v}(G)=\left\{\begin{array}{l}
\frac{n}{2} \text { if the path } P_{n} \text { is even } \\
{\left[\frac{n}{2}\right] \text { if the path } P_{n} \text { is odd }}
\end{array}\right.
$$

Proof. Case (i) n is even and $n \geq 4$.
Consider the path $P_{n}: v_{1}, v_{2}, v_{3}, v_{4} \ldots, v_{n-1}, v_{n}$ where n is even. The alternate triangular snake $A T_{n}$, in Figure 2.3 is obtained by replacing the alternate edges of P_{n} by triangle C_{3}. Clearly $A T_{n}$ contains $\frac{n}{2}$ triangles in which $u_{1}, u_{2}, u_{3}, u_{4} \ldots, u_{n} / 2$ are the new vértices. Note that $A T_{n}$ has n extreme edges and $\frac{n}{2}-1$ cut edges. By Theorem 1.1, every edge-to-vertex geodetic set contains at least one extreme edge from each C_{3}, and hence $g_{e v}(G) \geq \frac{n}{2}$. Also by Theorem 1.2, no cut edge of G which is not an end-edge of G belongs to every edge-to-vertex geodetic set of G. Let $S=\left\{u_{1} v_{1}\right.$, $\left.u_{2} v_{4}, u_{3} v_{6}, \ldots, u_{\frac{n}{2}} v_{n}\right\}$. Clearly S is a subset of the set of all extreme edges of $G=A T_{n}$. Since every vertices of $A T_{n}$ are either in S or lies in a geodesic joining of some pair of edges of $A T_{n}$, we get S is an edge-tovertex geodetic set of $G=A T_{n}$. Also it is seen that S is a minimum edge-to-vertex geodetic set of $A T_{n}$. Therefore $g_{e v}(G)=|S|=\frac{n}{2}$.

Alternate Triangular snake $\mathrm{A} T_{n}$
Figure 2.3

Case (ii) n is odd and $n \geq 3$.
In this case the alternate triangular snake $\mathrm{A} T_{n}$ in Figure 2.4 contains an end edge, $\frac{n-1}{2}$ triangles and $\frac{n-3}{2}$ cut edges. It is easily observe that $\mathrm{A} T_{n}$ has n extreme edges. By Theorem $1.3 \& 1.1$, Every edge-to-vertex geodetic set S of $\mathrm{A} T_{n}$ contains an end edge and at least $\frac{n-1}{2}$ extreme edges
and hence $g_{e v}(G) \geq \frac{n-1}{2}+1=\frac{n+1}{2}$. Consider the set $S=\left\{u_{1} v_{1}, u_{2} v_{4}, u_{3} v_{6}, \ldots, u_{\frac{n-1}{2}} v_{n-1}, v_{n-1} v_{n}\right\}$. Clearly S is a minimum edge-to-vertex geodetic set of $\mathrm{A} T_{n}$. Hence $g_{e v}(G)=\frac{n+1}{2}=\left\lceil\frac{n}{2}\right\rceil$.

Alternate triangular snake $\mathrm{A} T_{n}$
Figure 2.4

REFERENCES

[1] F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990.
[2] F. Buckley, F. Harary and L.V. Quintas, Extremal results on the Geodetic Number of a graph, Scientia A2 (1988) 17-22.
[3] G. Chartrand, F. Harary and P. Zhang, Geodetic sets in Graphs, Discussiones Mathematicae Graph Theory 20(2000)129-138.
[4] G. Chartrand, F. Harary and P. Zhang, On the Geodetic Number of a Graph, Networks Vol. 39 (1), (2002) 1-6.
[5] F. Harary, Graph Theory, Addision- Wesley(1969).
[6] J.John, A.Vijayan, S.Sujitha, The upper edge-to-vertex geodetic number of a graph, International Journal of Mathematics Archive 3(4), 2012, 1423-1428.

